Title : CS4620 Study
Student Name : Brian O Regan
Student Number: 110707163
Module : CS4620
Exam Date: Friday 19th December @14.00

Assignments 2013-14

```
--assignment 1
and1 :: [Bool] -> Bool
and1 [] = True
and1 bs = head bs == True && and1 (tail bs)
or1 :: [Bool] -> Bool
or1 bs = not(null bs) && head bs == True || or1 (tail bs)
issorted :: [Int] -> Bool
issorted [] = True
issorted ( n : []) = True
issorted (n:ns) = n < (head ns) && issorted ns
range1 :: Int -> Int -> [Int]
range1 lo hi | lo == hi = hi :[]
    | lo > hi = []
    | otherwise = lo : range1 (lo +1 ) hi
copies :: Int -> a -> [a]
copies 0x = []
copies nx = x : copies (n-1) x
```

--assignment 2
applyAll :: [(Int -> Int)] -> Int -> [Int]
applyAll [] $x=$ []
applyAll ($\mathrm{f}: \mathrm{fs}$) $\mathrm{x}=\mathrm{fx}$: applyAll fs x
remove :: (Int -> Bool) -> [Int] -> [Int]
remove p [] = []
remove $p(x: x s)=$ if $p x$ then
remove p xs
else
x :remove p xs
--OR
remove1 $p=$ foldr ($\backslash n$ acc -> if $p n$ then acc else $n: a c c$) []
count:: Eq a => a -> [a] -> Int
count x [] = 0
count x (n : ns) $=$ if $\mathrm{x}==\mathrm{n}$ then
$1+$ count x ns
else
count x ns
--OR
count1 $x=$ foldr ($\backslash n$ acc $->$ if $x==n$ then acc +1 else acc) 0

```
--maximum n:[] = n
--maximum n:ns = filter( \x -> x > n) ns
maximums :: [lnt] -> Int
maximums ns = maximums' ns 0
maximums' :: [Int] -> Int -> Int
maximums' [] z = z
maximums' (n:ns) z = if n > z then
    maximums' ns n
    else
    maximums' ns z
--OR
maximum2 ns = foldr( \n acc -> if n > acc then n else acc) (head ns) ns
append :: [Int] -> [Int] -> [Int]
append xs ys = foldr( \x acc -> x : acc ) ys xs
--assignment 3
partialSums :: [lnt] -> [lnt]
partialSums [] = []
partialSums ns = partialSums'ns 0
partialSums' :: [Int] -> Int -> [Int]
partialSums' [] _ = []
partialSums' (n:ns) acc = n + acc : partialSums' ns (n + acc)
powers :: Int -> [Int]
powers n=n : powers'n n
powers' :: Int -> Int -> [Int]
powers' n acc = n*acc : powers' n (n*acc)
--OR
powers1 :: Int -> [Int]
powers1 n = n: map( \x >> x * n) (powers1 n)
factorial :: Int -> Int
factorial 0=1
factorial n = factorial(n-1)* n
factorials :: [lnt]
factorials = [factorial n | | < [1..]]
--OR
factorials1 :: [Int]
factorials1 = 1 : zipWith( \n m -> n*m) factorials1 [2..]
```

Title : CS4620 Study
Student Name : Brian O Regan
Student Number: 110707163
Module : CS4620
Exam Date: Friday 19th December @14.00

```
--assignment 4
approx :: Float -> [Float]
approx x = 1.0 : map( \n -> (n + x/n)/2) (approx x)
squareRoot :: Float -> Float
squareRoot x = squareRoot' (head (approx x)) (tail (approx x))
squareRoot' :: Float -> [Float] -> Float
squareRoot' y (z:zs) = if (abs(z-y)) < 0.0001 then
    z
    else
    squareRoot' z zs
primes :: [lnt]
primes = 2: primes' [3,5..]
primes' :: [lnt] -> [Int]
primes' (n:ns) = if indivisible n== [] then
    n : primes' ns
    else
    primes' ns
indivisible :: Int >> [lnt]
indivisible n=[d | d <- (takeWhile(\x -> x <=
    floor( squareRoot(fromIntegral n) )) primes), mod n d == 0]
--OR
primes1 :: [lnt]
primes1 = 2: [p|p <- [3,5...], isPrime p ]
--isprime n:Checks if n has zero factors
isPrime :: Int -> Bool
isPrime n = factors n == []
--factors n : Checks if values from primes less than squareRoot n are factors
-- of n
factors :: Int -> [Int]
factors n=[f|f<- (takeWhile(\x -> x <=
    floor( squareRoot(fromIntegral n) )) primes), mod nf== 0]
--assignment 5
integers :: [Int]
integers = 0 : integers' [1..]
integers' :: [lnt] -> [lnt]
integers' (n:ns) = n: -n : integers' ns
runs :: Eq a => [a] -> Int
runs [] = 0
```

Title : CS4620 Study
Student Name : Brian O Regan
Student Number: 110707163
Module : CS4620

```
runs ( x: xs) = runs' x xs 1
runs' :: Eq b => b -> [b] -> Int -> Int
runs' acc (x:[]) result =
    if acc == x then
        result
    else
        (result + 1)
runs' acc ( x : xs ) result =
    if acc == x then
        runs' acc xs result
    else
        runs' x xs (result + 1)
occurences :: Eq a => [a] -> [(a, Int)]
occurences [] = []
occurences (x:xs) = (x,occurs x (x:xs)) : occurences (delete x xs)
occurs :: Eq a => a -> [a] -> Int
occurs x xs = length (filter(\f -> f== x) xs)
delete :: Eq a => a -> [a] -> [a]
delete x xs = filter(\f -> f/=x ) xs
```

Other

```
-- \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\)
-- Main Functions, Copybook
-- allDifferent xs : are all elements in the list 'xs' different?
-- Here, the equality function, \(/=\), is used over the elements of the list. This needs to be
acknowedged in the type of
-- the function, making it include the constraint that the type a belongs to the equality class, Eq,
allDifferent :: Eq a => [a] -> Bool
allDifferent [] = True
allDifferent [_] = True
allDifferent ( x1:x2:xs ) = x1 /= x2 \&\& allDifferent( x2:xs )
-- countMax xs : the number of times its maximum item occurs in the non-empty list 'xs'
countMax :: [Int] -> Int
countMax xs \(=\) length ( filter \((\backslash x\)-> \(x==\) maximum \(x s)\) xs \()\)
```

Title : CS4620 Study
Student Name : Brian O Regan
Student Number: 110707163
Module : CS4620
Exam Date: Friday 19th December @14.00

```
-- factorial : takes in a number ' }n\mathrm{ ' and returns its factorial
factorial :: Int -> Int
factorial 0=1
factorial n=n* factorial (n-1)
-- mystery(factorials) : returns list of factorials starting with 1, 1, 2, 6, 24...
-- (1 * 1, 1 * 2, 2 * 3, 6 * 4, 24 * 5...)
mystery :: [Int]
mystery = 1 : zipWith (*) mystery [1..]
```

square $n=n * n$
$\mathrm{f} n=(\mathrm{n} * \mathrm{n}, \mathrm{n} * \mathrm{n} * \mathrm{n})$
$\mathrm{f} 2=[\mathrm{n} * \mathrm{n} \mid \mathrm{n}<-[1 . .6]]$
$\mathrm{f} 3=[(\mathrm{c}, \mathrm{n}) \mid \mathrm{c}<-$ "AB", $\mathrm{n}<-$ [1 .. 3] $]$
-- squares of all even numbers between 1 and 10
$\mathrm{f} 4=\left[\mathrm{n}^{*} \mathrm{n} \mid \mathrm{n}<-\right.$ [1.. 10], $\left.\bmod \mathrm{n} 2==0\right]$
$f 5=[c \mid c<-$ "AB", $n<-[1$.. 3]]
primes $=[p \mid p<-[1 . .10]$, isPrime $p]$
isPrime $n=$ factors $n==[1, n]$
factors $n=[f \mid f<-[1 . . n], \bmod n f==0]$
boomBangs xs = [if $x<10$ then "BOOM!" else "BANG!" | $x<-x s$, odd x]
length' xs = sum [1 | _ <- xs]
-- Handout \#7 - List Comprehensions
_- $* ~$
-- square n : the square of the number ' n '
square 2 :: Num a => a -> a
square $2 \mathrm{n}=\mathrm{n}^{*} \mathrm{n}$
-- add $n 1 \mathrm{n} 2$: the sum of the numbers ' n 1 ' and ' n 2 '
add :: Num a => a -> a -> a

Title : CS4620 Study Student Name : Brian O Regan
Student Number: 110707163
Module : CS4620

```
add n1 n2 = n1 + n2
-- factorial n : the factorial of the non-negative integer 'n'
factorial2 :: Int -> Int
factorial2 0 = 1
factorial2 n= factorial( n-1) *n
-- sum' ns : the sum of all the elements in the numeric list 'ns'
sum" :: Num a => [a] -> a
sum" [] = 0
sum" ( n:ns ) = n + sum" ns
-- length xs : the number of elements in the list 'xs'
length" :: [a] -> Int
length" [] = 0
length" ( _:xs ) = 1 + length" xs
-- allEqual xs : are all the elements in the list 'xs' equal?
-- (Eq a => all values of a must be of equal type)
allEqual :: Eq a => [a] -> Bool
allEqual [] = True
alliEqual [_] = True
allEqual ( x1:x2:xs ) = x1 == x2 && allEqual( x2:xs )
-- pimres : the infinite list of prime numbers :2,3,5,7,11,13,17,...
primes3 :: [lnt]
primes3 = [p | <<- [ 2..], isPrime p ]
-- isPrime n : is the integer ' }\textrm{n}\mathrm{ ' a prime number ?
isPrime2 :: Int -> Bool
isPrime2 n= factors n== [1,n]
-- factors n : the list of factors of the positive integer ' }\textrm{n}\mathrm{ '
factors2 :: Int -> [Int]
factors2 n=[f|f<- [1..n], modnf== 0]
-- squares: squares using list comprehension
squares3 :: [lnt]
squares3=[ n * n | n <- [1, 2, 3, 4, 5] ]
-- example : list comprehension example
--example :: [ ( Char, a )]
```

Title : CS4620 Study
Student Name : Brian O Regan
Student Number : 110707163
Module : CS4620
Exam Date: Friday 19th December @14.00

```
example =[(c,n )| c<- "ABC", n <- [ 1..3 ] ]
-- example2 : list comprehension example
example2 :: [Int]
example2 = [ n * n | n <- [ 1..10], mod n 2 == 0 ]
```

-- Handout \#6 - Accumulators
$-* ~+~$
-- sum ns : the sum of all items in the numeric list 'ns'
sum3 $:$: [Int] -> Int
sum3 $=$ sum' 0
-- sum' sumSoFar ns : the sum of the number 'sumSoFar' and all items in the numeric list 'ns'
sum' :: Int -> [Int] -> Int
sum' sumSoFar ns = if null ns then
sumSoFar
else
sum' (sumSoFar + head ns) (tail ns)
-- maxSlow ns : the maximum item in the non-empty numeric list 'ns'
-- (the running time is exponential in the length of 'ns')
maxSlow :: [Int] -> Int
maxSlow ns = if null(tail ns) || head ns > maxSlow(tail ns) then
head ns
else
maxSlow(tail ns)
-- maxFast ns : the maximum item in the non-empty numeric list 'ns'
-- (the running time is linear in the length of 'ns')
maxFast :: [Int] -> Int
maxFast $n s=$ maxFast' $($ head $n s)($ tail $n s)$
-- maxFast' maxSoFar ns : the bigger of the number 'maxSoFar' and the maximum number in the
numeric list 'ns'
maxFast' :: Int -> [Int] -> Int
maxFast' maxSoFar ns = if null ns then
maxSoFar
else

Title : CS4620 Study
Student Name : Brian O Regan
Student Number: 110707163
Module : CS4620

```
maxFast'( max maxSoFar( head ns ) ) ( tail ns )
-- fibs : the infinite list of Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8,...
fibs :: [lnt]
fibs = fibs' 0 1
-- fibs' f1 f2 : the infinte list of Fibonacci numbers starting with the consequitive Fibonacci
numbers 'f1' and 'f2'
fibs' :: Int -> Int -> [Int]
fibs' f1 f2 = f1 : fibs' f2( f1 + f2 )
```

-- Handout \#5 - Infinite Lists

-- fibsSlow : the infinite list of Fibonacci Numbers : $0,1,1,2,3,5,8, \ldots$
fibsSlow :: [Int]
fibsSlow $=$ map fib([1..])
-- fib n : the ' n 'th Fibonacci number, for any positive integer ' n '
fib :: Int -> Int
fib $n=$ if $n==1$ then
0
else if $\mathrm{n}==2$ then 1
else
$\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)$
-- fibsSlow : the infinite list of Fibonacci Numbers : $0,1,1,2,3,5,8, \ldots$
fibsFast :: [Int]
fibsFast $=0: 1$: zipWith($\backslash f 1$-> \f2 -> f1 + f2) fibsFast(tail fibsFast)
-- dropMultiples d ns : the numeric list ' ns ' with all multiples of ' d ' removed
dropMultiples :: Int -> [Int] -> [Int]
dropMultiples $d=$ filter $(\backslash n->\bmod n d /=0)$
-- sieve ns : the result of applyine the sieve of Eratosthenes to the list 'ns'
sieve :: [lnt] -> [Int]
sieve [] = []
sieve ns = head ns: sieve(dropMultiples(head ns) (tail ns))

Title : CS4620 Study
Student Name : Brian O Regan
Student Number: 110707163
Module : CS4620

```
-- primes : the infinite list of prime numbers : 2, 3, 5, 7, 11,13,17, ..
primes2 :: [Int]
primes2 = sieve( [2..] )
-- primesB40 : the primes below 40
primesB40 :: [Int]
primesB40 = takeWhile( \p -> p <= 40 ) primes2
-- primes100 : the 100th prime
primes100 :: Int
primes100 = head( drop }99\mathrm{ primes2 )
-- primeA1000 : the first prime above 1000
primeA1000 :: Int
primeA1000 = head(dropWhile( \p -> p <= 1000 ) primes2 )
```

-- Handout \#4 - Higher Order Functions
-- $* ~+~$
-- zipwith f xs ys : the list formed by applying function 'f' to pairs
-- of corresponding components in lists 'xs' and 'ys'
-- stopping as soon as either list runs out
zipWith2 :: Num a => (a -> b -> c) -> [a] -> [b] -> [c]
zipWith2 f xs ys = if null xs || null ys then []
else
f(head xs) (head ys) : zipWith2 f(tail xs) (tail ys)
-- take n xs : the list of the first ' n ' components of ' $x s^{\prime}$ ', or 'xs' itself if ' n ' exceeds its length
take2 :: Int -> [a] -> [a]
take $2 \mathrm{n} x \mathrm{~s}=$ if $\mathrm{n}<=0$ || null xs then [] else head xs : take2 $(\mathrm{n}-1)($ tail xs$)$
-- drop n xs : the list ' x ' with the first ' n ' components removed, or the empty list if ' n ' exceeds its length
drop2 :: Int -> [a] -> [a]
drop2 n xs $=$ if $\mathrm{n}<=0$ || null xs then xs else $\operatorname{drop}(\mathrm{n}-1)($ tail xs$)$

Title : CS4620 Study
Student Name : Brian O Regan
Student Number: 110707163
Module : CS4620
Exam Date: Friday 19th December @14.00

```
-- takewhile p xs : the longest prefix of 'xs' whose components all satisfy predicate 'p'
takewhile :: ( a -> Bool ) -> [a] -> [a]
takewhile p xs = if null xs || not( p( head xs ) ) then [] else head xs : takewhile p (tail xs )
```

-- dropwhile pxs : the longest suffix of 'xs' whose first component does not satisfy predicate ' p '
dropwhile :: (a -> Bool) -> [a] -> [a]
dropwhile p xs = if null xs || not($p($ head $x s$)) then xs else dropwhile p (tail xs)
-- Handout \#3 - Higher Order Function

-- foldr fv xs : the result of appending item 'v' to the right end of the list ' xs '
-- and then cumulatively applying the two-parameter function ' f ' from
-- right to left on this augmented list
-- (A function in Haskell must always return values of the same type)
-- ($(a->b->b)->b==>$ Last b represents value of $v)$
-- ($[a]==>$ represents value of xs)
-- (Last b ==> return type fo foldr(value is whatever v returns))
foldr2 :: (a -> b -> b) -> b -> [a] -> b
foldr2 $f v x s=$ if null xs then velse $f($ head $x s)($ foldr2 $f v($ tail xs))
-- length xs : the number of components in the list 'xs'
-- (xs not actually needed in computation but makes definition syntactically correct => xs is the
next (head) element)
-- (xs goes in on the far right when the function is being called)
length3 :: Num a => [a] -> a
length3 = foldr(\xs -> \acc -> acc + 1) 0
-- map fxs : the list formed by applying function 'f' to each component of list 'xs'
map3 :: (a -> b) -> [a] -> [b]
$\operatorname{map} 3 \mathrm{f}=\mathrm{foldr}(\backslash \mathrm{x}->$ \acc $->\mathrm{fx}:$ acc $)[]$
-- filter p xs : the list formed by those components of list 'xs' which satisfy predicate ' p '
filter3 :: (a -> Bool) -> [a] -> [a]
filter3 $\mathrm{p}=$ foldr $(\backslash \mathrm{x}->$ \acc $->$ if p x then x : acc else acc $)[]$
-- sum ns : the sum of all items in the numeric lis 'ns'
sum $2::[$ lnt] $]$ Int
sum $2=$ foldr $(\backslash n 1->\backslash n 2->n 1+n 2) 0$

Title : CS4620 Study
Student Name : Brian O Regan
Student Number: 110707163
Module : CS4620
Exam Date: Friday 19th December @14.00

```
-- product2 ns : the product of all items in the numeric list 'ns'
product2 :: [lnt] -> Int
product2 = foldr( \n1 -> \n2 -> n1 * n2 ) 1
-- and bs : do all components of the boolean list 'bs' equal True ?
and2 :: [Bool] -> Bool
and2 = foldr( \b1 -> \b2 -> b1 && b2 ) True
-- or bs : does any component of the list 'bs' equal True ?
or2 :: [Bool] -> Bool
or2 = foldr( \b1 -> \b2 -> b1 || b2 ) False
-- all p xs : do all componenets of the list 'xs' satisfy predicate 'p'
all2 :: ( a -> Bool ) -> [a] -> Bool
all2 pxs=and2(map pxs)
-- any p xs : does any component of the list 'xs' satisfy predicate 'p'
-- ( p takes in a, and returns a Bool )
any2 ::( ( a -> Bool ) -> [a] -> Bool
any2 pxs=or2(map p xs )
```

-- element x xs : does item 'x' occur in list 'xs'
element2 :: Eq a => a -> [a] -> Bool
element2 $\mathrm{xxs}=\operatorname{any2}($ le ->e $==\mathrm{x}$) xs
-- Handout \#2 - Higher Order Functions

-- map fxs : the list formed by applying function ' f ' to each component of the list 'xs'
$\operatorname{map} 2::(\mathrm{a}->\mathrm{b})$) $>$ [a] -> [b]
map2 $\mathrm{xx}=$ if null xs then [] else $\mathrm{f}($ head xs$)$: map2 $\mathrm{f}($ tail xs$)$
-- filter p xs : the list formed by the components of list 'xs' which satisfy predicate 'p'

Title : CS4620 Study
Student Name : Brian O Regan
Student Number : 110707163
Module : CS4620

```
-- ( filter takes in ( a and returns a bool ), and takes in [a] and returns [a] )
filter2 :: ( a -> Bool ) -> [a] -> [a]
filter2 p xs = if null xs then [] else if p( head xs ) then
head xs : filter 2 p ( tail xs ) else filter2 p (tail xs )
-- doublelist xs : the list formed by doubling each number in the list 'xs'
doublelist :: [Int] -> [Int]
doublelist = map( \x -> 2*x)
-- fliplist xs : the list formed by negating each boolean in the list 'xs'
fliplist :: [Bool] -> [Bool]
fliplist = map not
-- positives xs : the list of positive numbers in the list 'xs'
positives :: [lnt] -> [lnt]
positives = filter( \x -> x>0 )
-- multiples d : the list of numbers in the list 'xs' which are divisible by 'd'
multiples :: Int -> [Int] -> [Int]
multiples d= filter( \x >> mod x d== 0)
-- Handout #1 - Simple Recursion
-- ***********************************
-- null ns : is the list 'ns' empty
null2 :: Eq a => [a] -> Bool
null2 xs = xs == []
-- length xs : the number of components
length2 :: [a] -> Int
length2 xs = if null xs then 0 else 1 + length( tail xs )
-- element x xs : does the item 'x' exist in list the 'xs' ?
element :: Eq a => a -> [a] -> Bool
elementxxs = not ( null xs )
&& (( head xs == x ) || element x (tail xs ))
-- count x xs : the number of times that the item 'x' occurs in the list 'xs'
count :: Eq a => a -> [a] -> Int
```

Title : CS4620 Study
Student Name : Brian O Regan
Student Number: 110707163
Module : CS4620
Exam Date: Friday 19th December @14.00

```
count x xs = if null xs then 0
else if head xs == x then 1+ count x (tail xs)
else count x (tail xs)
-- append xs ys : the list formed by joining the lists 'xs' and 'ys'
append :: [a] -> [a] -> [a]
append xs ys = if null xs then
ys else head xs : append( tail xs ) ys
-- Assignment 5
-- ***********************************
-- frequencies xs : the list of tuples of distinct items and their individual
-- frequencies in list 'xs'
frequencies :: Eq a => [a] -> [(a, Int)]
frequencies xs = [ (a,b)|a<- rmDuplicates xs, b <- [numOccurences xs a] ]
-- numOccurences xs I : counts the number of occurrences of the letter 'l'
-- in the list 'xs'
numOccurences :: Eq a => [a] -> a -> Int
numOccurences xs I = length (filter (\letter -> letter == I) xs)
-- rmDuplicates xs : the list formed by removing duplicate values from 'xs'
rmDuplicates :: Eq a => [a] -> [a]
rmDuplicates [] = []
rmDuplicates (x:xs) = x : rmDuplicates (filter (\value -> not(x == value)) xs)
-- pytrips : The (infinite) list of Pythagorean Triples of 3-tuple positive
-- integers (x,y,z), and where x and y have no common factor
pytrips :: [(Int, Int, Int)]
pytrips = [(x,y,z)|z<-[1..], y<-[1..z], x<-[1..y], x^2+y^2==z^2, gcd x y==1]
```

-- as x : Returns an infinite list [a1, a2, a3, . . .] of approximations
-- which converge to the square root of ' x ' where ' x ' > 0
as :: Float -> [Float]
as $\mathrm{x}=1.0$: as' 1.0 x
-- as' num1 num2 : Returns an infinite list [a1, a2, a3, . . .] of
-- approximations which converge to the square root of ' x '
-- where 'num1' \& 'num2' are used to calculate the square root
as' :: Float -> Float -> [Float]
as' num1 num2 $=($ num1 + num2/num1) $/ 2.0$: as' ((num1 + num2/num1) / 2.0) num2

Title : CS4620 Study
Student Name : Brian O Regan
Student Number : 110707163
Module : CS4620
Exam Date: Friday 19th December @14.00

```
-- squareroot x : Returns the square root of 'x' where 'x' > 0
squareroot :: Float -> Float
squareroot x = cmp 0 (sqroot 1.0 x)
-- cmp pos list : compares two items in 'list' at position 'pos' & 'pos+1'
cmp :: Int -> [Float] -> Float
cmp pos list = if abs(list !! pos - list !! (pos+1)) < 0.0001 then
                    list !! (pos+1)
                    else
                    cmp (pos+1) list
```

-- sqroot x : Returns the square root of ' x ' where ' x ' >0 and where
-- 'num1' \& 'num2' are used to calculate the square root
sqroot :: Float -> Float -> [Float]
sqroot num1 num2 $=($ num1 + num2/num1)/2.0 : sqroot ((num1 + num2/num1)/2.0) num2
-- Assignment 4
_- $* ~$
-- powers n : the list of all positive powers of ' n '
-- ("two parameters are enough")
powers3 :: Int -> [Int]
powers $3 \mathrm{n}=$ powers' $\mathrm{n}(\mathrm{n}$ * n$) \mathrm{n}$
-- powers' p1 p2 p3 : the infinite list of all positive powers of 'p3'
-- starting with 'p1' and 'p2'
powers' :: Int -> (Int -> (Int -> [Int]))
powers' p1 p2 p3 = p1 : powers' p2 (p2 * p3) p3
-- factorials : the list of factorials of all positive integers
-- ("two parameters are enough")
factorials3 :: [Int]
factorials3 = factorials' 123
-- factorials' f1 f2 f3: the infinite list of all positive factorial integers
-- starting with the consecutive numbers 'f1', 'f2'
-- and 'f3'
factorials' :: Int -> (Int -> (Int -> [Int]))
factorials' f1 f2 f3 = f1: factorials' f2 (f2 * f3) (f3 + 1)

Title : CS4620 Study
Student Name : Brian O Regan
Student Number: 110707163
Module : CS4620
Exam Date: Friday 19 th December @ 14.00

```
-- runs ns : the number of blocks of adjacent equal items in the finite
-- numeric list 'ns'
runs :: [Int] -> Int
runs ns = runs' 1 ns
-- runs' adjSoFar ns : the number of blocks of adjacent equal items in 'adjSoFar'
-- in the finite numeric list 'ns'
runs' :: Int -> ( [Int] -> Int )
runs' adjSoFar ns = if null ns then
            O
        else if null( tail ns ) then
        adjSoFar
        else
        if head ns == head( tail ns )
            then runs' adjSoFar (tail ns )
        else
            runs' (adjSoFar + 1 ) ( tail ns )
```

-- Assignment 3
-. $* ~$
-- partialSums ns : the list of partial sums on the numeric list 'ns'
-- ("theres a way to avoid null ns test, and still handle empty lists - can you find it?")
partialSums :: [Int] -> [Int]
partialSums ns = if null ns then [] else head ns : zipWith(\n1 -> \n2 -> n1 + n2) (partialSums ns) (
tail ns)
-- powers n : the list of all positive powers of the number ' n '
powers :: Int -> [Int]
powers $\mathrm{n}=\mathrm{n}: \operatorname{map}(\backslash \mathrm{n} 1->\mathrm{n} 1 * \mathrm{n})($ powers n$)$
-- factorials : the list of factorials of all positive integers
-- ("can be simplified further - its easy!")
factorials :: [Int]
factorials = 1:2: zipWith(\n1 -> \n2 -> n1 * n2) (tail factorials) [3..]
-- Assignment 2
-- $* ~$

Title : CS4620 Study
Student Name : Brian O Regan
Student Number: 110707163
Module : CS4620
-- applyAll fs x : the list formed by applying each function in the function list 'fs' on the item ' x '
--applyAll :: ([a] -> a) -> a -> [a]
applyAll $\mathrm{fs} x=\operatorname{map}(\backslash f->f x)$ fs
-- remove p xs : the list formed by those components of list 'xs' which do not satisfy predicate ' p ' -- (xs taken in at the right side of function when function is called)
remove :: (a -> Bool) -> [a] -> [a]
remove $p=$ filter ($\backslash n->\operatorname{not}(p n))$
-- count x xs : the number of times the item ' x ' occurs in the list 'xs'
count2 :: Eq a => a -> [a] -> Int
count2 $x=$ foldr ($\backslash x s$-> \acc $->$ if $x==x s$ then acc +1 else acc) 0
-- max ns : the maximum number in the non-empty numeric list ' ns '
-- (must also check for negative number lists eg. $\max (-5,-2)=>0 \ldots$ should be -2 ?)
max2 :: [Int] -> Int
$\max 2=$ foldr ($\backslash \mathrm{ns}->$ \acc $->$ if $n s>$ acc then $n s$ else acc $) 0$
-- append xs ys : the list formed by joining the list 'xs' and 'ys' in that order append2 :: [a] -> [a] -> [a]
append 2 xs ys $=$ foldr $(\backslash x->$ acc $->x$:acc $)$ ys xs
__ $* *$
-- Assignment 1
-_ $* *$
-- last xs : takes in a non-empty list 'xs' \& returns the rightmost component last2 :: [a] -> a
last2 xs = if null (tail xs) then head xs
else last2(tail xs)
-- issorted xs : checks if list 'xs' is sorted
issorted :: Ord a => [a] -> Bool
issorted xs = if $x s==[]| |$ tail $x s==[]$ then True
else if head xs > head(tail xs) then False
else issorted(tail xs)
-- range lo hi : the list from 'lo' to 'hi' inclusive
range :: Int -> Int -> [Int]
range lo hi $=$ if lo > hi then []

Title : CS4620 Study
Student Name : Brian O Regan
Student Number: 110707163
Module : CS4620
Exam Date: Friday 19th December @14.00

```
    else lo : range( lo + 1 ) hi
-- copies n x : the value of 'x' exactly 'n' times
copies :: Int -> a -> [a]
copies n x = if n == 0 then []
else x : copies(n-1) x
```


Exam Paper Questions

Static (Compile Time) Dynamic (Real Time)	- The allocation of memory for the specific fixed purposes of a program in a predetermined fashion controlled by the compiler is said to be static memory allocation. - The allocation of memory (and possibly its later deallocation) during the running of a program and under the control of the program is said to be dynamic memory allocation. Advantages / Disadvantages - Advocates of static typing argue that the advantages of static typing include earlier detection of programming mistakes (e.g. preventing adding an integer to a Boolean), better documentation in the form of type signatures (e.g. incorporating number and types of arguments when resolving names), more opportunities for compiler optimizations (e.g. replacing virtual calls by direct calls when the exact type of the receiver is known statically), increased runtime efficiency (e.g. not all values need to carry a dynamic type), and a better design time developer experience (e.g. knowing the type of the receiver, the IDE can present a dropdown menu of all applicable members). Static typing fanatics try to make us believe that "well-typed programs cannot go wrong". While this certainly sounds impressive, it is a rather vacuous statement. Static type checking is a compile-time abstraction of the runtime behaviour of your program, and hence it is necessarily only partially sound and incomplete. This means that programs can still go wrong because of properties that are not tracked by the type-checker, and that there are programs that while they cannot go wrong cannot

	be type-checked. The impulse for making static typing less partial and more complete causes type systems to become overly complicated and exotic as witnessed by concepts such as "phantom types" [11] and "wobbly types" [10]. This is like trying to run a marathon with a ball and chain tied to your leg and triumphantly shouting that you nearly made it even though you bailed out after the first mile. - Advocates of dynamically typed languages argue that static typing is too rigid, and that the softness of dynamically languages makes them ideally suited for prototyping systems with changing or unknown requirements, or that interact with other systems that change unpredictably (data and application integration). Of course, dynamically typed languages are indispensable for dealing with truly dynamic program behaviour such as method interception, dynamic loading, mobile code, runtime reflection, etc. In the mother of all papers on scripting [16], John Ousterhout argues that statically typed systems programming languages make code less reusable, more verbose, not safer, and less expressive than dynamically typed scripting languages. This argument is parroted literally by many proponents of dynamically typed scripting languages. We argue that this is a fallacy and falls into the same category as arguing that the essence of declarative programming is eliminating assignment. Or as John Hughes says [8], it is a logical impossibility to make a language more powerful by omitting features. Defending the fact that delaying all type-checking to runtime is a good thing, is playing ostrich tactics with the fact that errors should be caught as early in the development process as possible.
Curried Functions	Currying is when you break down a function that takes multiple arguments into a series of functions that take part of the arguments. Here's an example in Scheme (define (add a b) $(+a b))$ (add 3 4) returns 7 This is a function that takes two arguments, a and b, and returns their sum. We will now curry this function: (define (add a) (lambda (b) $(+a b)))$ This is a function that takes one argument, a, and returns a function that takes another argument, b, and that function returns their sum.

$\left.\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { ((add 3) 4) } \\ \text { (define add3 (add 3)) } \\ \text { (add3 4) }\end{array} \\ & \begin{array}{l}\text { The first statement returns 7, like the (add 3 4) statement. The } \\ \text { second statement defines a new function called add3 that will } \\ \text { add 3 to its argument. This is what some people may call a } \\ \text { closure. The third statement uses the add3 operation to add 3 to } \\ \text { 4, again producing 7 as a result. } \\ \text { Curried functions are easier to read, has clearer intent and }\end{array} \\ \hline \text { provides shorter code. You also get easier reuse of more } \\ \text { abstract functions because it lets you specialize/partially apply } \\ \text { functions using a lightweight syntax and then pass these partially } \\ \text { applied functions around to higher order function such as map } \\ \text { or filter. Higher order functions (which take functions as } \\ \text { parameters or yield them as results) are the bread and butter of } \\ \text { functional programming, and currying and partially applied } \\ \text { functions enable higher order functions to be used much more } \\ \text { effectively and concisely. } \\ \text { Lazy Evaluation } \\ \text { ln many cases it is not necessary to know it, but in some cases } \\ \text { Ine difference between shared and separated objects yields } \\ \text { different orders of space or time complexity. }\end{array}\right\} \begin{array}{l}\text { Eager Haskell is an implementation of the Haskell programming } \\ \text { language which by default uses eager evaluation. The four } \\ \text { widely available implementations of Haskell---ghc, nhc, hugs, } \\ \text { and hbc---all use lazy evaluation. The design of Eager Haskell }\end{array}\right\}$
$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { eagerly. This web page highlights some of the techniques we are } \\ \text { using to accomplish this. }\end{array} \\ \hline \text { Prolog computes Relations } & \begin{array}{l}\text { In Prolog, program logic is expressed in terms of relations, and a } \\ \text { computation is initiated by running a query over these relations. } \\ \text { Relations and queries are constructed using Prolog's single data } \\ \text { type, the term.[4] Relations are defined by clauses. Given a } \\ \text { query, the Prolog engine attempts to find a resolution refutation } \\ \text { of the negated query. If the negated query can be refuted, i.e., } \\ \text { an instantiation for all free variables is found that makes the } \\ \text { union of clauses and the singleton set consisting of the negated } \\ \text { query false, it follows that the original query, with the found } \\ \text { instantiation applied, is a logical consequence of the program. } \\ \text { This makes Prolog (and other logic programmang languages) } \\ \text { particularly useful for database, symbolic mathematics, and } \\ \text { language parsing applications. Because Prolog allows impure } \\ \text { predicates, checking the truth value of certain special predicates } \\ \text { may have some deliberate side effect, such as printing a value to } \\ \text { the screen. Because of this, the programmer is permitted to use } \\ \text { some amount of conventional imperative programming when } \\ \text { the logical paradigm is inconvenient. It has a purely logical } \\ \text { subset, called "pure Prolog", as well as a number of extralogical } \\ \text { features. }\end{array} \\ \hline \text { Predicates in Prolog define relations rather than functions. }\end{array}\right\}$

	Title : CS4620 Study
	Student Name : Brian O Regan
	Student Number : 110707163
	Module : CS4620
	Exam Date: Friday 19 ${ }^{\text {th }}$ December @14.00

Map	map = \f -> foldr (\x -> \acc -> fx : acc) []
Change Interpreter for Factor from / to : :name definition \{definition\} name	Use LET to make the assignment
	factor : : Int -> Int factor $1=[]$ factor $n=$ let prime = head \$ dropWhile ((/=0) . mod n) [2 .. n] in (prime :) \$ factor \$ div n prime

